

Automation1 iXI4 and XI4 Transconductance Amplifier Controllers

HARDWARE MANUAL

Revision 1.04

GLOBAL TECHNICAL SUPPORT

Go to the Global Technical Support Portal for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2020-2022, Aerotech, Inc., All rights reserved.

Table of Contents

Automation1 iXI4 and XI4 Transconductance Amplifier Controllers	
Table of Contents	
List of Figures	
List of Tables	
EU Declaration of Conformity	
Safety Procedures and Warnings	
Handling and Storage	
Installation Overview	11
Chapter 1: iXI4/XI4 Overview	13
1.1. Electrical Specifications	
1.2. Mechanical Specifications	
1.2.1. Mounting and Cooling	
1.2.2. Dimensions	21
1.2.3. DIN Rail Mounting	
1.2.4. OEM Mounting	
1.3. Environmental Specifications	27
1.4. Drive and Software Compatibility	
Chapter 2: Installation and Configuration	
2.1. Input Power Connections	
2.1.2. Minimizing Noise for EMC/CE Compliance	20
2.2. Axis Connector	21
2.2.1. Current Command Output Signals	عرب
2.2.2. Stepper Clock and Stepper Direction Signals	33
2.2.3. Hall-Effect Inputs	35
2.2.3.1. Brushless Motor Powered Motor and Feedback Phasing	36
2.2.4. End of Travel Limits	
2.2.4.1. End of Travel Limit Phasing	
2.2.5. Amplifier Fault Inputs	39
2.2.6. Amplifier Enable Output	40
2.2.7. Primary Encoder Inputs	
2.2.7.1. Square Wave Encoder (Primary)	
2.2.7.2. Absolute Encoder (Primary)	
2.2.7.3. Sine Wave Encoder (Primary)	44
2.2.7.4. Encoder Phasing	46
2.2.7.5. Stepper Motor Phasing	
2.2.8. Auxiliary Encoder Interface	
2.2.8.1. Square Wave Encoder (Auxiliary)	48
2.3. Digital I/O Connector	
2.3.1. Digital Outputs	50
2.3.2. Digital Inputs	53
2.3.3. High-Speed User Input	55
2.4. Analog I/O and Laser Interface Connector	56
2.4.1. Position Synchronized Output (PSO) Interface	5/
2.4.2. Analog Outputs	59
2.4.3. Analog Inputs (Differential)	
2.4.4. Sync Port	
2.5. HyperWire Interface	
2.6. Industrial Ethernet (iXI4 Only)	
2.7. System Interconnection	
2.8. PC Configuration and Operation Information	
Chapter 3: Cables and Accessories	67
3.1. Joystick Interface	67
3.2. Handwheel Interface	68
Chapter 4: Maintenance	60
Chapter 4. Manitellance	

4.1. Preventative Maintenance	70
Appendix A: Warranty and Field Service	71
Appendix B: Revision History	73
Index	75

List of Figures

Figure 1-1:	iXI4 Transconductance Amplifier Controller	13
Figure 1-2:	XI4 Transconductance Amplifier Controller	14
Figure 1-3:	iXI4-OEM Transconductance Amplifier Controller	15
Figure 1-4:	XI4-OEM Transconductance Amplifier Controller	16
Figure 1-5:	Functional Diagram	18
Figure 1-6:	Dimensions [-2P1 (Standard 2-Axis)]	21
Figure 1-7:	Dimensions [-4P1 (Standard 4-Axis)]	22
Figure 1-8:	Dimensions [-2P2 (OEM 2-Axis)]	23
Figure 1-9:	Dimensions [-4P2 (OEM 4-Axis)]	24
Figure 1-10:	Din Rail Clip Dimensions	25
Figure 2-1:	Control Supply Connections	29
Figure 2-2:	Current Command Output Schematic	32
Figure 2-3:	Stepper Clock and Stepper Direction Timing	33
Figure 2-4:	Stepper Clock and Stepper Direction Output Schematic	34
Figure 2-5:	Hall-Effect Inputs Schematic	35
Figure 2-6:	Positive Motor Direction	36
Figure 2-7:	Encoder and Hall Signal Diagnostics	36
Figure 2-8:	End of Travel Limit Input Connections	37
Figure 2-9:	End of Travel Limit Input Schematic	37
Figure 2-10:	End of Travel Limit Input Diagnostic Display	38
Figure 2-11:	Fault Input Schematic	39
Figure 2-12:	Amplifier Enable Output Schematic	40
Figure 2-13:	Square Wave Encoder Schematic (Axis Connector)	42
Figure 2-14:	Absolute Encoder Schematic (Axis Connector)	43
Figure 2-15:	Sine Wave Encoder Phasing Reference Diagram	44
Figure 2-16:	Sine Wave Encoder Schematic (Axis Connector)	45
Figure 2-17:	Encoder Phasing Reference Diagram (Standard)	46
Figure 2-18:	Position Feedback in the Diagnostic Display	46
Figure 2-19:	Positive Motor Direction	47
Figure 2-20:	Square Wave Encoder Interface (Auxiliary)	48
Figure 2-21:	Digital Outputs Schematic	51
Figure 2-22:	Digital Outputs Connected in Current Sourcing Mode	52
Figure 2-23:	Digital Outputs Connected in Current Sinking Mode	52
Figure 2-24:	Digital Inputs Schematic	53
Figure 2-25:	Digital Inputs Connected to Current Sourcing (PNP) Devices	54
Figure 2-26:	Digital Inputs Connected to Current Sinking (NPN) Devices	54
Figure 2-27:	High-Speed Input	55
Figure 2-28:	PSO TTL Outputs Schematic	57
Figure 2-29:	PSO External Sync Input Schematic	58
Figure 2-30:	Analog Outputs Schematic	59
Figure 2-31:	Analog Inputs Schematic	60
Figure 2-32:	Drive-Based Controller System Interconnection (Best Practice)	63
Figure 2-33:	PC-Based Controller System Interconnection (Best Practice)	64
Figure 3-1:	Two Axis Joystick Interface	67
Figure 3-2:	Handwheel Interconnection to Axis Connector	68

List of Tables

Table 1-1:	Feature Summary	17
Table 1-2:	Electrical Specifications	19
Table 1-3:	Mounting Specifications	20
Table 1-4:	Mounting Parts	25
Table 1-5:	OEM Mounting Parts	26
Table 1-6:	Environmental Specifications	27
Table 1-7:	Drive and Software Compatibility	
Table 2-1:	Control Supply Connector Pinout	
Table 2-2:	Control Supply Mating Connector Ratings	
Table 2-3:	Axis Connector Pinout	
Table 2-4:	Axis Mating Connector Ratings	31
Table 2-5:	Current Command Pins on the Axis Connector	32
Table 2-6:	Current Command Signal Output Specifications	32
Table 2-7:	Clock and Direction Pins on the Axis Connector	
Table 2-8:	Stepper Clock and Stepper Direction Signal Output Specifications	33
Table 2-9:	Stepper Direction Signal Output Polarity	
Table 2-10:	Hall-Effect Feedback Pins on the Axis Connector	
Table 2-11:	Hall Signal Diagnostics	36
Table 2-12:	End of Travel Limit Pins on the Axis Connector	37
Table 2-13:	Amplifier Fault Input Specifications	39
Table 2-14:	Amplifier Enable Connector Pin on the Axis Connector	
Table 2-15:	Amplifier Enable Output Specifications	
Table 2-16:	Multiplier Options	
Table 2-17:	Primary Encoder Pins on the Axis Connector	
Table 2-18:	Square Wave Encoder Specifications	
Table 2-19:	Sine Wave Encoder Specifications	44
Table 2-20:	Auxiliary Encoder Pins on the Axis Connector	48
Table 2-21:	Square Wave Encoder Specifications	48
Table 2-22:	Digital I/O Connector Pinout	49
Table 2-23:	Digital I/O Mating Connector Ratings [-EB1]	49
Table 2-24:	Digital Output Specifications	
Table 2-25:	Digital Output Pins on Digital I/O Connector	50
Table 2-26:	Digital Input Specifications	53
Table 2-27:	Digital Input Pins on the Digital I/O Connector	53
Table 2-28:	High-Speed Input Specifications	
Table 2-29:	High-Speed Input Pins on the Digital I/O Connector	55
Table 2-30:	Analog I/O and Laser Interface Connector Pinout	56
Table 2-31:	Laser Interface Mating Connector Ratings	56
Table 2-32:	PSO Specifications	57
Table 2-33:	PSO External Sync Specifications	57
Table 2-34:	PSO Output Pins on the Analog I/O and Laser Interface Connector	57
Table 2-35:	Analog Output Specifications	59
Table 2-36:	Analog Output Pins on the Analog I/O and Laser Interface Connector	59
Table 2-37:	Analog Input Specifications	
Table 2-38:	Analog Input Pins on the Analog I/O and Laser Interface Connector	60
Table 2-39:	Sync-Related Functions	
Table 2-40:	Sync Port Cables	61
Table 2-41:	HyperWire Card Part Number	62

Table 2-42:	HyperWire Cable Part Numbers	62
	Standard Interconnection Cables	
Table 4-1:	LED Description	69
	Troubleshooting	
Table 4-3:	Preventative Maintenance	70

EU Declaration of Conformity

ManufacturerAerotech, Inc.Address101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

Product iXI4/XI4 **Model/Types** All

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following directive(s):

2014/30/EU Electromagnetic Compatibility (EMC)

2011/65/EU RoHS 2 Directive

EU 2015/863 Amendment RoHS 3 Directive

and has been designed to be in conformity with the applicable requirements of the following standard(s) when installed and used in accordance with the manufacturer's supplied installation instructions.

EN 55011:2000/A2:2003 Conducted and Radiated Emissions EN 55022:1998 Conducted and Radiated Emissions

Authorized Representative

/ Simon Smith, European Director

Aerotech Ltd

The Old Brick Kiln, Ramsdell, Tadley

Hampshire RG26 5PR

UK

Engineer Verifying

Compliance

Clos Reheard / Alex Weibel

Aerotech, Inc. 101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

Date 7/19/2022

CE

Safety Procedures and Warnings

IMPORTANT: This manual tells you how to carefully and correctly use and operate the controller.

• Read all parts of this manual before you install or operate the controller or before you do maintenance to your system.

- To prevent injury to you and damage to the equipment, obey the precautions in this manual.
- All specifications and illustrations are for reference only and were complete and accurate as of the release of this manual. To find the newest information about this product, refer to www.aerotech.com.

If you do not understand the information in this manual, contact Aerotech Global Technical Support.

IMPORTANT: This product has been designed for light industrial manufacturing or laboratory environments. If the product is used in a manner not specified by the manufacturer:

- The protection provided by the equipment could be impaired.
- The life expectancy of the product could be decreased.

Safety notes and symbols are placed throughout this manual to warn you of the potential risks at the moment of the safety note or if you fail to obey the safety note.

The voltage can cause shock, burn, or death.

You are at risk of physical injury. You could damage the controller.

A surface can be hot enough to burn you.

Your actions, the temperature of the system, or the condition of the atmosphere that surround the system could start a fire.

Components are sensitive to electrostatic discharge.

Unsecured cables could cause you to:

- trip and fall
- drag the product off of its mounting location
- damage the cable connections.

www.aerotech.com

A blue circle symbol is an action or tip that you should obey. Some examples include:

- General tip
- Read the manual/section
- Wear protective safety equipment (eye protection, ear protection, gloves)

9

If applicable, do not lift unassisted

Handling and Storage

Unpacking the controller

IMPORTANT: All electronic equipment and instrumentation is wrapped in antistatic material and packaged with desiccant. Ensure that the antistatic material is not damaged during unpacking.

Inspect the shipping container for any evidence of shipping damage. If any damage exists, notify the shipping carrier immediately.

Remove the packing list from the shipping container. Make sure that all the items specified on the packing list are contained within the package.

The documentation for the controller is on the included installation device. The documents include manuals, interconnection drawings, and other documentation pertaining to the system. Save this information for future reference. Additional information about the system is provided on the Serial and Power labels that are placed on the chassis.

The system serial number label contains important information such as the:

- Customer order number (please provide this number when requesting product support)
- · Drawing number
- System part number

Handling

IMPORTANT: It is the responsibility of the customer to safely and carefully lift and move the controller.

- Be careful when you move or transport the controller.
- Refer to Section 1.2. Mechanical Specifications for dimensions and weight specifications.
- Retain the shipping materials for future use.
- Transport or store the controller in its protective packaging.

WARNING: Electrostatic Discharge (ESD) Sensitive Components!

You could damage the power supply or drives if you fail to observe the correct ESD practices.

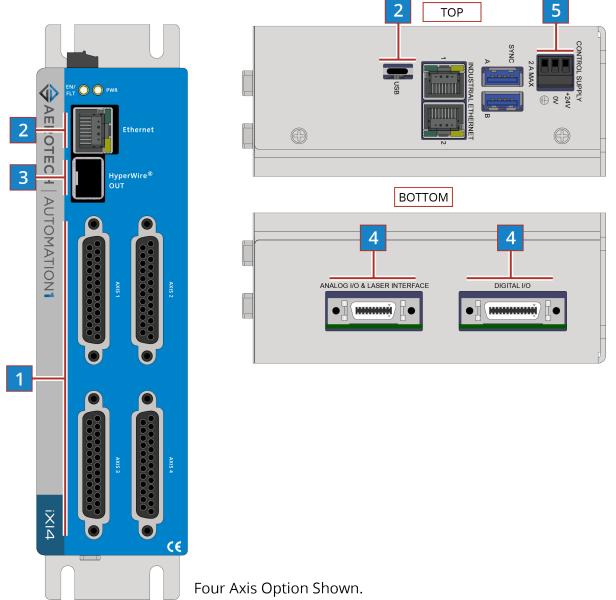
Wear an ESD wrist strap when you handle, install, or do service to the system assembly.

Storage

10

Store the controller in the original shipping container. If the original packaging included ESD protective packaging, make sure to store the controller in it. The storage location must be dry, free of dust, free of vibrations, and flat.

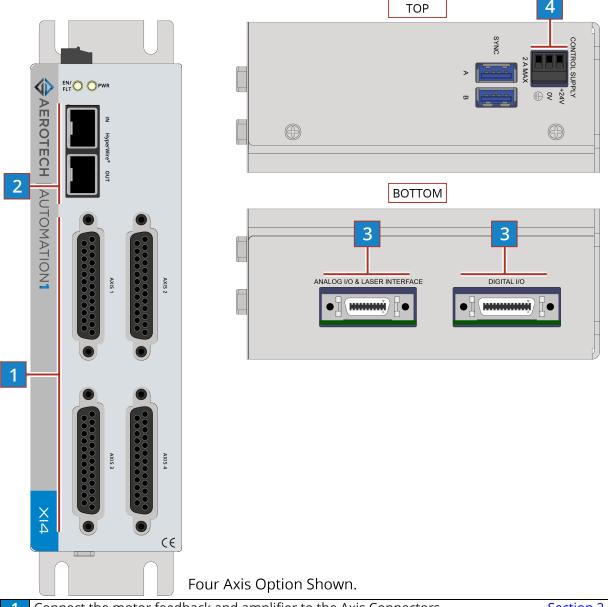
Refer to Section 1.3. Environmental Specifications.


Installation Overview

The images that follow show the order in which to make connections and settings that are typical to the iXI4/XI4. If a custom interconnect drawing was supplied with your system, that drawing is on your Storage Device and shows as a line item on your Sales Order in the Integration section.

IMPORTANT: Standard and OEM connections are the same. Standard view shown.

Figure 1: Installation Connection Overview (iXI4 4-Axis Shown)

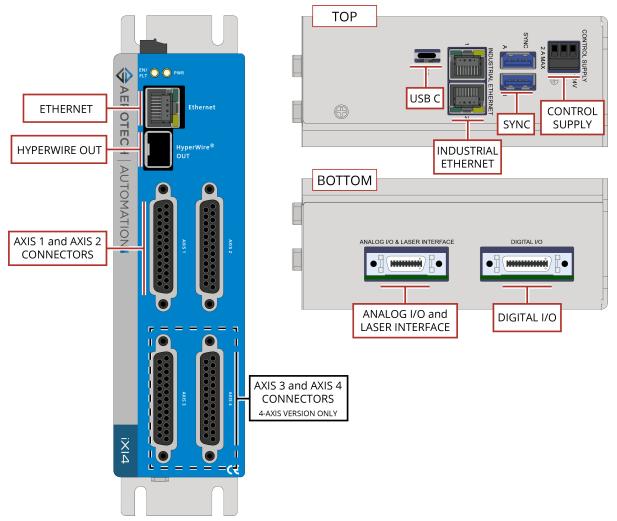


1	Connect the motor feedback and amplifier to the Axis Connectors.	Section 2.2.
2	Connect the PC to the USB or Ethernet port.	N/A
3	Connect the next drive in the system to the HyperWire Out port.	Section 2.5.
4	Connect additional I/O as required by your application.	Section 2.3. /
	1 33 11	Section 2.4.
5	Connect the power supply to the Control Supply.	Section 2.1.1.

IMPORTANT: Standard and OEM connections are the same. Standard view shown.

Figure 2: Installation Connection Overview (XI4 4-Axis Shown)

1	Connect the motor feedback and amplifier to the Axis Connectors.	Section 2.2.
2	Connect the PC HyperWire to the HyperWire In port.	Section 2.5.
3	Connect additional I/O as required by your application.	Section 2.3. / Section 2.4.
4	Connect the power supply to the Control Supply.	Section 2.1.1.


Chapter 1: iXI4/XI4 Overview

The iXI4 is a multi-axis digital drive-based controller. It runs the Automation1-iSMC controller to generate commands for itself as well as for additional drives on the chain.

The XI4 is a multi-axis digital drive based on the HyperWire communication protocol. It receives commands from a PC or a drive-based controller.

Both drives provide deterministic behavior, auto-identification, and are fully software configurable. They can control industry-standard analog transconductance amplifiers that accept analog current commands and clock-and-direction commands.

Figure 1-1: iXI4 Transconductance Amplifier Controller

AXIS 1 and AXIS 2
CONNECTORS

ANALOG I/O and LASER INTERFACE

ANALOG I/O and LASER INTERFACE

AXIS 3 and AXIS 4
CONNECTORS

AXIS 3 and AXIS 4
CONNECTORS

AXIS 3 and AXIS 4
CONNECTORS

Figure 1-2: XI4 Transconductance Amplifier Controller

14

TOP USB C]]]]]]]] ETHERNET CONTROL SUPPLY SYNC HYPERWIRE OUT INDUSTRIAL ETHERNET BOTTOM AXIS 1 and AXIS 2 • H (HHHHHHHŅ) CONNECTORS ANALOG I/O and DIGITAL I/O LASER INTERFACE AXIS 3 and AXIS 4 **CONNECTORS** 4-AXIS VERSION ONLY

Figure 1-3: iXI4-OEM Transconductance Amplifier Controller

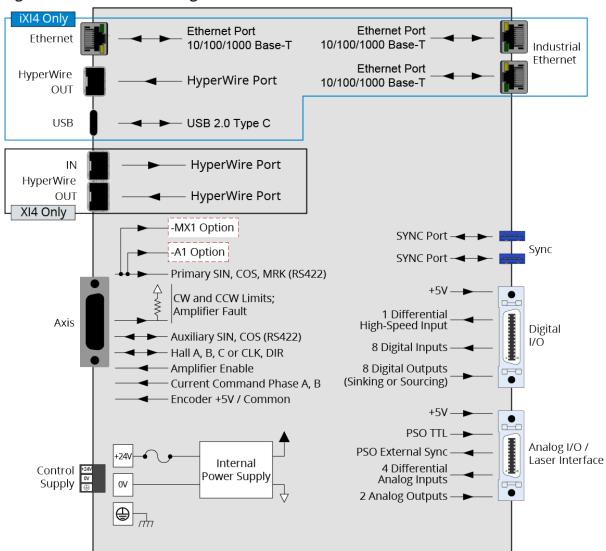
TOP 0 CONTROL SUPPLY SYNC **HYPERWIRE** BOTTOM AXIS 1 and AXIS 2 CONNECTORS ANALOG I/O and DIGITAL I/O LASER INTERFACE amort am t AXIS 3 and AXIS 4 CONNECTORS 4-AXIS VERSION ONLY

Figure 1-4: XI4-OEM Transconductance Amplifier Controller

www.aerotech.com

16

Table 1-1: Feature Summary


Standard Features

- 24 VDC control supply input (Section 2.1.1.)
- Analog current command outputs (± 10V) (Section 2.2.1.)
- Stepper clock and direction outputs (Section 2.2.2.)
- Line driver square wave quadrature encoder input for position feedback (Section 2.2.7.)
- Line driver square wave auxiliary () quadrature encoder input or output for PSO (Section 2.2.8.1.)
- Eight digital user outputs (Section 2.3.1.)
- Nine digital user inputs
 - Eight digital inputs (Section 2.3.2.)
 - One high-speed input (Section 2.3.3.)
- Two 16-bit analog outputs (± 10V) (Section 2.4.2.)
- Four 16-bit differential analog inputs (± 10V) (Section 2.4.3.)
- One 10/100/1000 BASE-T Ethernet Port (iXI4 Only)
- One USB 2.0 Type C Port (iXI4 Only)
- Two 10/100/1000 BASE-T Industrial Ethernet Ports (iXI4 Only)

Options				
Configuration	Configuration			
-2P1	Two Axes of Control, Standard Packaging			
-2P2	Two Axes of Control, OEM Packaging			
-4P1	Four Axes of Control, Standard Packaging			
-4P2	Four Axes of Control, OEM Packaging			
Encoder (Section	2.2.7.2.)			
-A0	No Absolute Encoder support			
-A1	Absolute Encoder support			
Multiplier (Section	n 2.2.7.3.)			
-MX0	No encoder multiplier			
-MX1	Interpolation circuit allowing for analog sine wave input on the primary encoder channel with an interpolation factor of 4,096.			
PSO (Section 2.4.	1.)			
-PSO1	One-axis PSO firing (includes One-axis Part-Speed PSO)			
-PSO2	Two-axis PSO firing (includes Two-axis Part-Speed PSO)			
-PSO3	Three-axis PSO firing (includes Three-axis Part-Speed PSO)			
-PSO6 Three-axis Part-Speed PSO firing, which uses the PSO firing circuit based off of the commanded vector velocity of 3 or more axes (includes One-Axis PSO).				
Version				
-DEFAULT	Firmware Matches Software Line			
-LEGACY	Legacy Firmware Version X.XX.XXX			

The block diagram that follows shows a summary of the connector signals.

Figure 1-5: Functional Diagram

1.1. Electrical Specifications

Table 1-2: Electrical Specifications

Description		iXI4/XI4	
	Input Voltage	24 VDC	
Control Supply	Innut Current	2-Axis: 2 A max, 0.45 A typical	
	Input Current	4-Axis: 2 A max, 0.6 A typical	
User Power Supply Output		5 VDC (@ 500 mA)	
Modes of Operation		Brushless, Brush, Stepper	
Protective Features		Control power supply under voltage	

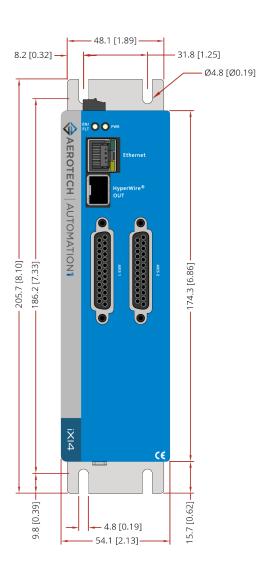
1.2. Mechanical Specifications

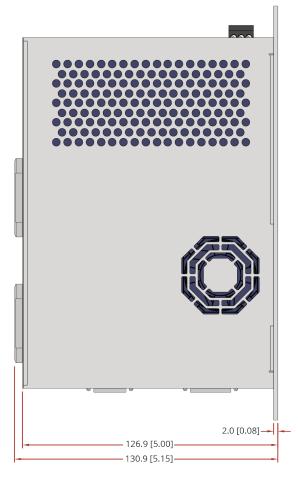
1.2.1. Mounting and Cooling

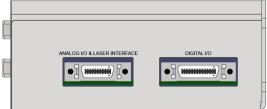
The controller must be installed in an enclosed control cabinet suitable for installation of power equipment. A minimum enclosure rating of IP54 is required to comply with safety standards. Make sure that there is sufficient clearance surrounding the controller for free airflow and for the routing of cables and connections. Consideration for items such as line reactors, line filters, and motor chokes or inductance should be made during the initial cabinet design phase.

Table 1-3: Mounting Specifications

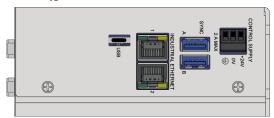
		iXI4/XI4	
		IP54 Compliant	
Customer-Supplied Enclos	ure	For DIN Rail Mounting,	
		refer to Section 1.2.3. DIN Rail Mounting	
Weight	Standard	0.60 kg	
Weight	OEM	0.25 kg	
Mounting Hardware	Standard	M4 [#8] screws (four locations, not included)	
Widditing Hardware	OEM	M3 screws and M3 standoffs (seven locations)	
Mounting Orientation		Vertical (typical)	
Dimensions		Refer to Section 1.2.2. Dimensions	
Minimum Clearance Airflow		~25 mm	
Connecto		~100 mm	
Minimum Airflow Standard		Provided by internal fan	
(over the drive) OEM		4.2 CMF (NOTE : Customer Supplied)	
Operating Temperature		Refer to Section 1.3. Environmental Specifications	
Drive IP Rating		IP20	

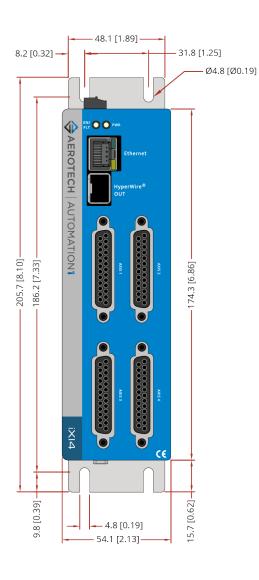

1.2.2. Dimensions

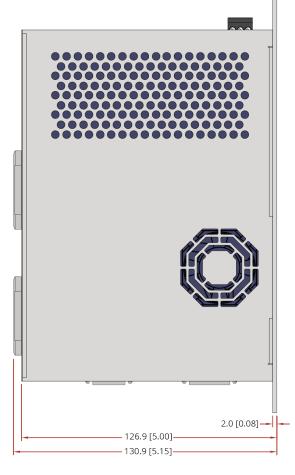

IMPORTANT: iXI4 and XI4 dimensions are the same. iXI4 is shown.

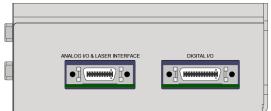

Figure 1-6: Dimensions [-2P1 (Standard 2-Axis)]

Recommended Mounting Hardware: M4 [#8] Dimensions: MM [IN]

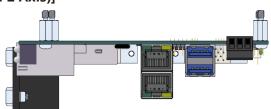


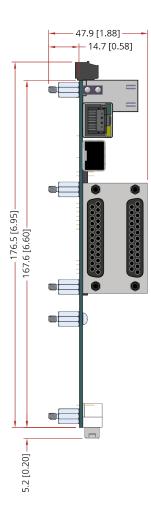


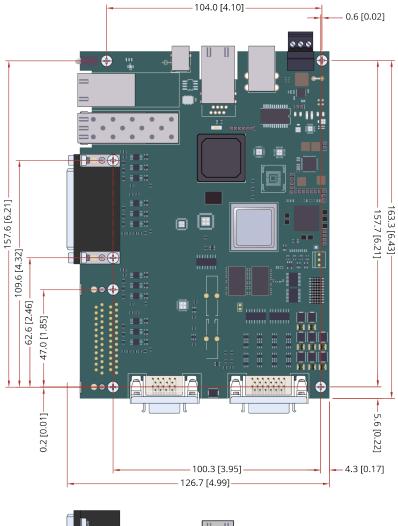

IMPORTANT: iXI4 and XI4 dimensions are the same. iXI4 is shown.


Figure 1-7: Dimensions [-4P1 (Standard 4-Axis)]

Recommended Mounting Hardware: M4 [#8] Dimensions: MM [IN]







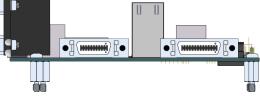
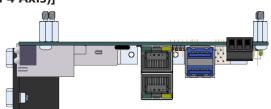
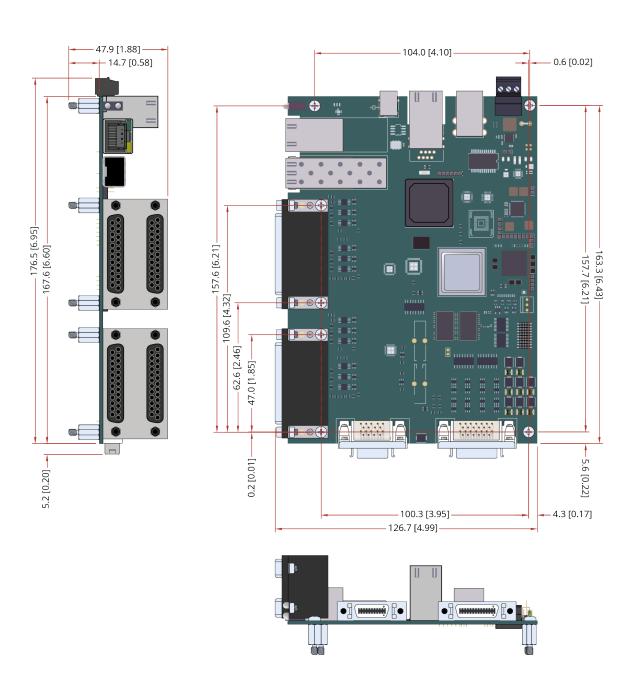

IMPORTANT: iXI4-OEM and XI4-OEM dimensions are the same. iXI4-OEM is shown.

Figure 1-8: Dimensions [-2P2 (OEM 2-Axis)]



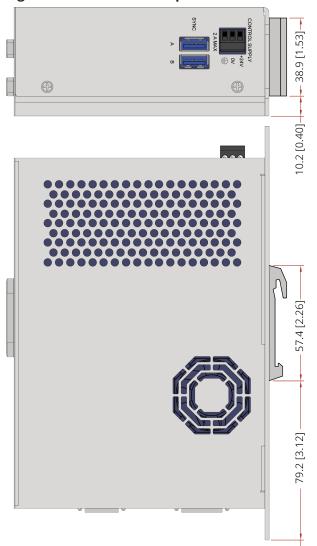


IMPORTANT: iXI4-OEM and XI4-OEM dimensions are the same. iXI4-OEM is shown.

Figure 1-9: Dimensions [-4P2 (OEM 4-Axis)]

1.2.3. DIN Rail Mounting

A DIN rail can only be used with the -2P1 or -4P1 options.


DIN Rail Mounting Procedure:

- 1. Mount the DIN rail clip to the iXI4/XI4. The clip and #6-32 x 1/4 flat head screws are included in the DIN rail clip kit.
- 2. Cut the DIN rail so one complete mounting hole extends beyond the last component at each end.
- 3. Secure the DIN Rail to the mounting surface with #10-32 screws spaced every six inches. NOTE: Do not install the DIN rail to the mounting surface with the components already attached.
- 4. Install all components on to the DIN rail.

Table 1-4: Mounting Parts

	Aerotech P/N
DIN Rail	EAM00914
DIN Rail Clip Kit	HyperWire-DIN

Figure 1-10: Din Rail Clip Dimensions

1.2.4. OEM Mounting

OEM Mounting Procedure:

1. Secure the seven M3 standoffs to the mounting surface with M3 hex nuts. These hex nuts are not included with the drive.

NOTE: Do not install the standoffs to the mounting surface with the drive already attached.

2. Attach the drive to the standoffs with the M3 screws. These screws are included with the drive.

Table 1-5: OEM Mounting Parts

	Aerotech P/N
M3 Threaded Hex Standoff, 10 mm length	EIH01181
M3 Philips Pan Head Screw, 8 mm length	HCY0003008

1.3. Environmental Specifications

The environmental specifications are listed below.

Table 1-6: Environmental Specifications

Ambient Operating: 0° to 40°C (32° to 104° F)		
Temperature Storage: -30° to 85°C (-22° to 185° F)		
Humidity Non-condensing The maximum relative humidity is 80% for temperatures to less than 31°C and decreases linearly to 50% relative humidity 40°C.		
Operating Altitude	0 m to 2,000 m (0 ft to 6,562 ft) above sea level. If you must operate this product above 2,000 m or below sea level, contact Aerotech, Inc.	
Pollution	Pollution Degree 2 Typically only nonconductive pollution occurs.	
Operation	Use only indoors	

1.4. Drive and Software Compatibility

This table shows the available drives and which version of the software first supported each drive. In the **Last Software Version** column, drives that show a specific version number are not supported after that version.

Table 1-7: Drive and Software Compatibility

Drive Type	First Software Version	Last Software Version
iXI4	2.2.0	Current
XI4	2.1.0	Current

This page intentionally left blank.

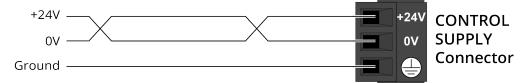
Chapter 2: Installation and Configuration

The sections in this chapter include details on how to set up the electrical and safety components of your system. Obey all safety warnings, including those in Safety Procedures and Warnings.

2.1. Input Power Connections

The controller has one DC input power connector for control power. For a full list of electrical specifications, refer to Section 1.1. Refer to Section 2.7. for a System Interconnection Drawing.

2.1.1. Control Supply Connector



DANGER: Shock and Fire Hazard

Electrical wiring must be designed and installed in accordance with local electrical safety regulations to prevent the risk of fire and electrical shock.

The Control Supply input supplies power to the communications and logic circuitry of the drive. The **+24V** input is connected to an internal fuse. For an isolated DC supply, connect **0V** to protective ground at the supply. Use twisted pair wiring to minimize radiated noise emissions (refer to Figure 2-1).

Figure 2-1: Control Supply Connections

Table 2-1: Control Supply Connector Pinout

Pin	Description
	24 VDC (±10%) Control Power Input
+24 V	(2-Axis: 2 A max, 0.45 A typical;
	4-Axis: 2 A max, 0.6 A typical)
0 V	Control Power Common Input
	Protective Ground

Table 2-2: Control Supply Mating Connector Ratings

Specification		Description
Туре		3-Pin Terminal Block
Part Numbers		Aerotech: ECK02456
		Phoenix: 1839610
Conductor Cross	One conductor, stranded with ferrule and plastic sleeve	1822 AWG (0.250.75 mm ²)
Section	Two conductors (same cross- section), stranded , twin ferrule with plastic sleeve	20 AWG (0.5 mm ²)
Tightening Torque		0.220.25 N·m
Conductor Insulation Strip Length		7 mm (0.25 in)
(1) Refer to the manufacturer website for additional information.		

2.1.2. Minimizing Noise for EMC/CE Compliance

30

IMPORTANT: The iXI4/XI4 is a component designed to be integrated with other electronics. EMC testing must be conducted on the final product configuration.

To reduce electrical noise, observe the following motor feedback and input power wiring techniques.

- 1. Use shielded cable for the feedback connector. Connect the shield to the backshell at each end of the cable.
- 2. Mount drives and power supplies on a conductive panel. Keep wire-run lengths to a minimum.
- 3. Use a separate wire for each ground connection to the drive. Use the shortest possible wire length.

For additional iXI4/XI4 system interconnection information, refer to Section 2.7. System Interconnection.

2.2. Axis Connector

The connector pin assignment is shown in Table 2-3 with detailed connection information in the following sections.

Table 2-3: Axis Connector Pinout

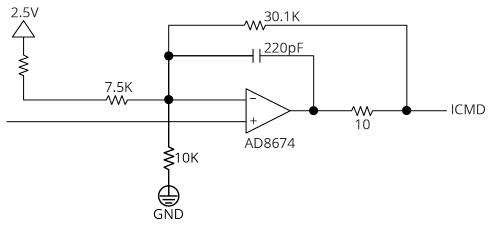
Pin #	Description	In/Out/Bi	Connector
1	Current Command A	Output	
2	Amplifier Enable	Output	
3	Signal Common	Output	
4	Hall Effect Sensor A	Input	
5	Auxiliary Sine +	Bidirectional	
6	Auxiliary Cosine +	Bidirectional	
7	Clockwise End of Travel Limit	Input	
8	+5 V Supply (500 mA)	Output	
9	Primary Sine +	Input	13
10	Primary Cosine +	Input	25
11	Primary Marker +	Input	
''	Absolute Data +	Bidirectional	
12	Absolute Clock +	Output	
13	Reserved	N/A	
14	Current Command B	Output	(25) (3) (25) (4) (1) (1) (1) (1) (1) (1) (1
15	Amplifier Fault	Input	
16	Hall Effect Sensor B	Input	
10	Stepper Clock	Output	
17	Hall Effect Sensor C	Input	
17	Stepper Direction	Output	
18	Auxiliary Sine -	Bidirectional	1
19	Auxiliary Cosine -	Bidirectional	
20	Counterclockwise End of Travel Limit	Input	
21	Signal Common	Output	
22	Primary Sine -	Input	
23	Primary Cosine -	Input	
24	Primary Marker -	Input	
24	Absolute Data -	Bidirectional	
25	Absolute Clock -	Output	

Table 2-4: Axis Mating Connector Ratings

Tubic 2 4. Axis Mating Connector Ratings			
Specification	25-Pin Solder Cup	Backshell	
Aerotech Part Number	ECK00101	ECK00656	
Amphenol Part Number (1)	DB25P064TXLF	17E-1726-2	
Maximum Wire Size 20 AWG (0.5 mm²) N/A			
(1) Refer to the manufacturer website for additional information.			

2.2.1. Current Command Output Signals

The iXI4/XI4 uses the Current Command A and B outputs to interface to an industry standard analog transconductance amplifier. These outputs are updated at a 20 kHz rate. Use the ServoLoopSetup parameter the configure this output type.


Table 2-5: Current Command Pins on the Axis Connector

Pin #	Description	In/Out/Bi
1	Current Command A	Output
3	Signal Common	Output
14	Current Command B	Output

Table 2-6: Current Command Signal Output Specifications

Specification	Value
Rated Output Current	10 mA
Output Voltage Range	±10 V
Reset State	0 V

Figure 2-2: Current Command Output Schematic

2.2.2. Stepper Clock and Stepper Direction Signals

The iXI4/XI4 uses the Stepper Clock and Stepper Direction outputs to interface to stepper motor drivers. Use the ServoLoopSetup parameter to configure this output type. The Hall-effect sensors are not available in this mode.

Table 2-7: Clock and Direction Pins on the Axis Connector

Pin #	Description	In/Out/Bi
16	Hall Effect Sensor B	Input
16	Stepper Clock	Output
17	Hall Effect Sensor C	Input
17	Stepper Direction	Output

 Table 2-8:
 Stepper Clock and Stepper Direction Signal Output Specifications

Specification	Value
Output Voltage	5V TTL
Maximum Output Frequency	25 MHz
Maximum Source / Sink Current	±20 mA
Clock Default State	Logic Low (0 V)
Direction Default State	Logic Low (0 V)
Maximum Clock Pulse Width	25 μs
Minimum Clock Pulse Width	20 ns

To change the direction of the rotation of the motor, reverse the polarity of one of the phases. Reverse the A and A-N or B and B-N wires at the stepper motor driver.

Table 2-9: Stepper Direction Signal Output Polarity

Specification	Value	
Negative / CCW Direction	Logic Low (0 V)	
Positive / CW Direction	Logic High (+5 V)	

Figure 2-3: Stepper Clock and Stepper Direction Timing

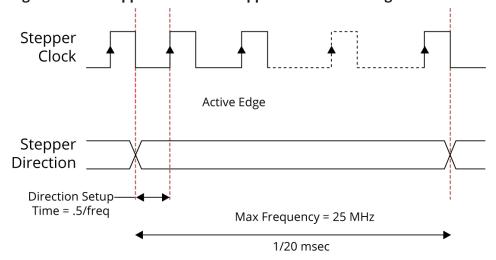
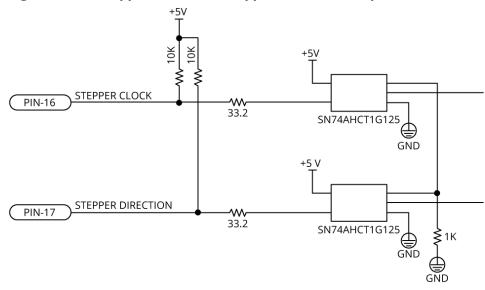
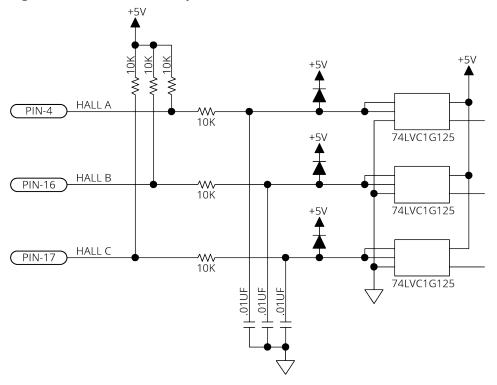



Figure 2-4: Stepper Clock and Stepper Direction Output Schematic

2.2.3. Hall-Effect Inputs

The Hall-effect switch inputs are recommended for AC brushless motor commutation but not absolutely required. The Hall-effect inputs accept 5 VDC level signals. Hall states (0,0,0) or (1,1,1) are invalid and will generate a "Hall Fault" axis fault.

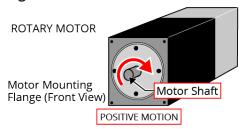

Refer to Section 2.2.3.1. for Hall-effect device phasing.

The Hall-effect sensors are not available when the ServoLoopSetup parameter is configured for stepper clock and direction outputs.

Table 2-10: Hall-Effect Feedback Pins on the Axis Connector

Pin #	Description	In/Out/Bi
3	Signal Common	Output
4	Hall Effect Sensor A	Input
8	+5 V Supply (500 mA)	Output
16	Hall Effect Sensor B	Input
10	Stepper Clock	Output
17	Hall Effect Sensor C	Input
17	Stepper Direction	Output
21	Signal Common	Output

Figure 2-5: Hall-Effect Inputs Schematic


2.2.3.1. Brushless Motor Powered Motor and Feedback Phasing

Observe the state of the encoder and Hall-effect device signals in the Diagnostics section of the Status Utility.

Table 2-11: Hall Signal Diagnostics

Hall-Signal Status	Definition
	0 V or logic low
ON	5 V or logic high

Figure 2-6: Positive Motor Direction

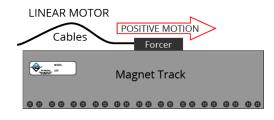
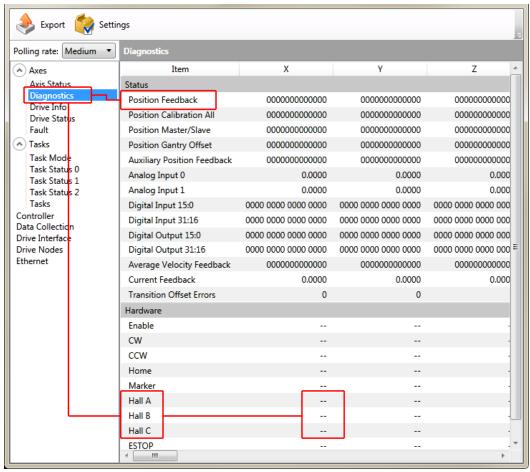



Figure 2-7: Encoder and Hall Signal Diagnostics

2.2.4. End of Travel Limits

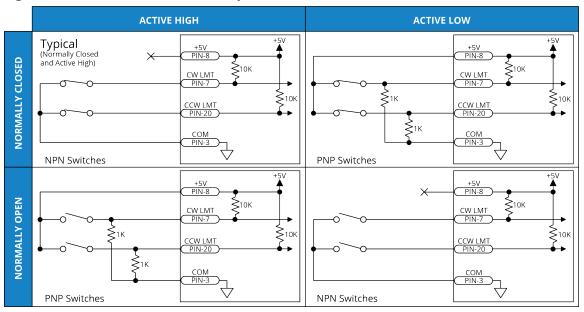
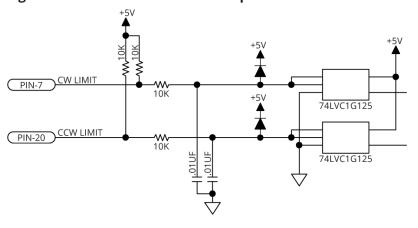
End of Travel (EOT) limits are required to define the end of the physical travel on linear axes. Positive or clockwise motion is stopped by the clockwise (CW) end of travel limit input. Negative or counterclockwise motion is stopped by the counterclockwise (CCW) end of travel limit input. All of the end-of-travel limit inputs accept 0-24 VDC level signals. Limit directions are relative to the encoder polarity in the diagnostics display (refer to Figure 1-1).

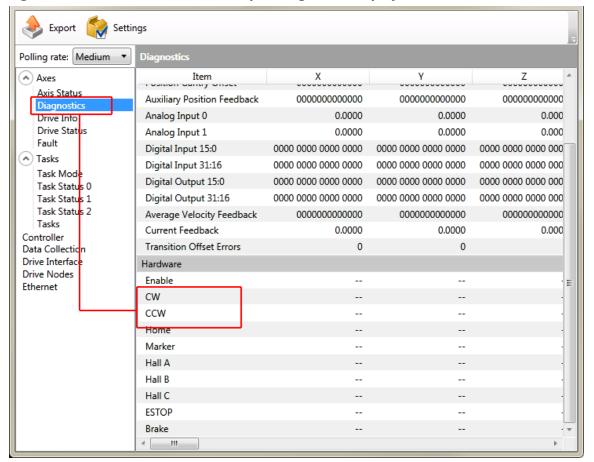
Table 2-12: End of Travel Limit Pins on the Axis Connector

Pin #	Description	In/Out/Bi
3	Signal Common	Output
7	Clockwise End of Travel Limit	Input
8	+5 V Supply (500 mA)	Output
20	Counterclockwise End of Travel Limit	Input

The active state (High/Low) of the EOT limits is software selectable (by the EndOfTravelLimitSetup axis parameter). Figure 2-8 shows the possible wiring configurations for normally-open and normally-closed switches and the parameter setting to use for each configuration. Use NPN-type normally-closed limit switches (Active High) to provide fail-safe behavior in the event of an open circuit.

Figure 2-8: End of Travel Limit Input Connections

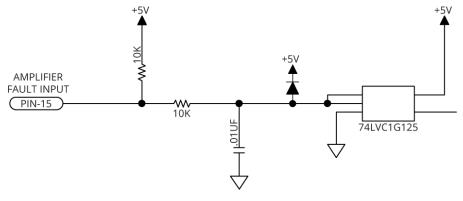




Figure 2-9: End of Travel Limit Input Schematic

2.2.4.1. End of Travel Limit Phasing

If the EOT limits are reversed, you will be able to move further into a limit but be unable to move out. To correct this, swap the connections to the CW and CCW inputs at the Feedback connector or swap the CW and CCW limit functionality in the software using the EndOfTravelLimitSetup parameter. View the logic level of the EOT limit inputs in the Diagnostics display (shown in Figure 2-10).

Figure 2-10: End of Travel Limit Input Diagnostic Display


2.2.5. Amplifier Fault Inputs

Use the amplifier fault input to monitor the stepper driver status. Use the FaultSetup parameter to configure the active polarity. The use of this input is optional.

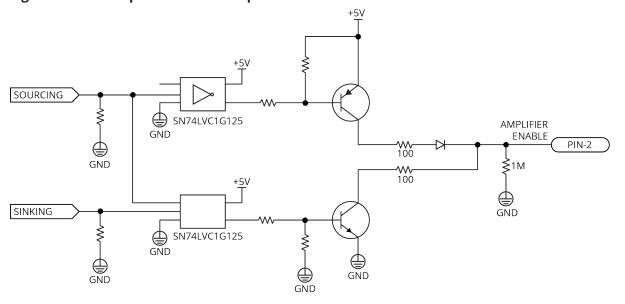
Table 2-13: Amplifier Fault Input Specifications

Specification	Value
Maximum Input Voltage	5V

Figure 2-11: Fault Input Schematic

2.2.6. Amplifier Enable Output

Use the AmplifierEnableOutputMode parameter to set the enabled state of the amplifier enable output to sinking or sourcing. The default state is sourcing. However, during a drive reset and when the amplifier is disabled, the amplifier enable output is high-impedance. To ensure a fail-safe state, you must install external pull resistors on the output to pull it to a safe state when the amplifier is disabled.


Table 2-14: Amplifier Enable Connector Pin on the Axis Connector

Pin #	Description	In/Out/Bi
2	Amplifier Enable	Output

Table 2-15: Amplifier Enable Output Specifications

Specification	Value
High-Level Output Voltage	4.4 V
Output Current Source / Sink	10 mA

Figure 2-12: Amplifier Enable Output Schematic

2.2.7. Primary Encoder Inputs

The primary encoder inputs are accessible through the Axis connector. Use the PrimaryFeedbackType parameter to configure the controller to accept an encoder signal type.

Square Wave encoder signals: Section 2.2.7.1.

Absolute encoder signals: Section 2.2.7.2.

Sine Wave encoder signals (as permitted by the multiplier option): Section 2.2.7.3.

You cannot use a sine wave encoder with the -MX1 multiplier option as an input to the PSO. The -MX1 option does not generate emulated quadrature signals.

Refer to Section 2.2.7.4. for encoder feedback phasing.

Refer to Section 2.2.8. for the auxiliary encoder on the Axis connector.

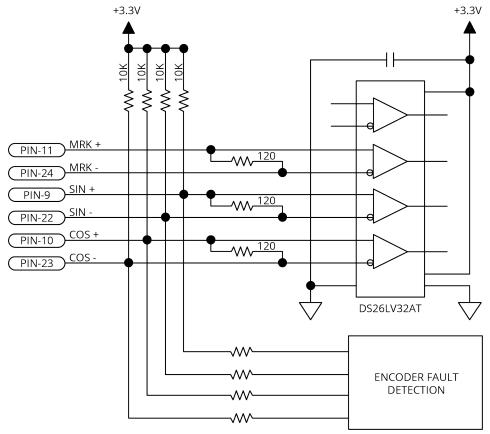
Table 2-16: Multiplier Options

Option	Primary Encoder Accepts	Auxiliary Encoder Accepts
-MX0	Square Wave or Absolute encoders	Square Wave encoders
-MX1	Sine Wave, Square Wave, or Absolute encoders	Square Wave encoders

IMPORTANT: Physically isolate the encoder wiring from motor, AC power, and all other power wiring

Table 2-17: Primary Encoder Pins on the Axis Connector

Pin #	Description	In/Out/Bi
8	+5 V Supply (500 mA)	Output
9	Primary Sine +	Input
10	Primary Cosine +	Input
11	Primary Marker +	Input
11	Absolute Data +	Bidirectional
12	Absolute Clock +	Output
21	Signal Common	Output
22	Primary Sine -	Input
23	Primary Cosine -	Input
24	Primary Marker -	Input
	Absolute Data -	Bidirectional
25	Absolute Clock -	Output

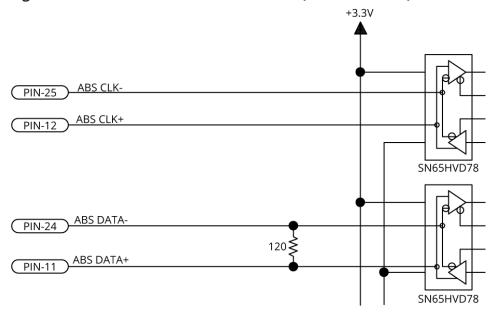

2.2.7.1. Square Wave Encoder (Primary)

The drive accepts RS-422 square wave encoder signals. The drive will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

Table 2-18: Square Wave Encoder Specifications

Specification	Value	
Encoder Frequency	10 MHz maximum (25 ns minimum edge separation)	
x4 Quadrature Decoding	40 million counts/sec	

Figure 2-13: Square Wave Encoder Schematic (Axis Connector)


2.2.7.2. Absolute Encoder (Primary)

The drive retrieves absolute position data along with encoder fault information through a serial data stream from the absolute encoder. Use twisted-pair wiring for the highest performance and noise immunity. You cannot echo an absolute encoder signal.

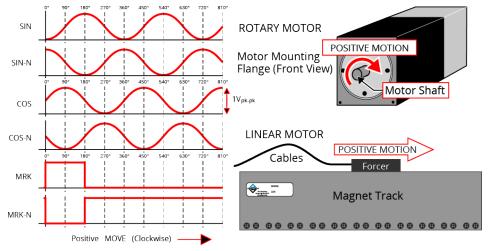
Refer to Figure 2-14 for the serial data stream interface.

Refer to the Help file for information on how to set up your EnDat or BiSS absolute encoder parameters.

Figure 2-14: Absolute Encoder Schematic (Axis Connector)

2.2.7.3. Sine Wave Encoder (Primary)

The Sine Wave Encoder option provides higher positioning resolution by subdividing the fundamental output period of the encoder into smaller increments. The amount of subdivision is specified by the PrimaryEncoderMultiplicationFactor parameter. Use Encoder Tuning to adjust the value of the gain, offset, and phase balance controller parameters to get the best performance. For more information, refer to the Help file.


You cannot use a sine wave encoder with the -MX1 multiplier option as an input to the PSO. The -MX1 option does not generate emulated quadrature signals.

For the highest performance, use twisted pair double-shielded cable with the inner shield connected to signal common and the outer shield connected to frame ground. Do not join the inner and outer shields in the cable.

Table 2-19: Sine Wave Encoder Specifications

Specification	Value
Input Frequency (max)	450 kHz
Input Amplitude (1)	0.6 to 1.75 Vpk-pk
Interpolation Factor (max)	4,096
Input Common Mode	1.5 to 3.5 VDC
(1) Measured as SIN(+) - SIN(-) or COS(+) - COS(-)	

Figure 2-15: Sine Wave Encoder Phasing Reference Diagram

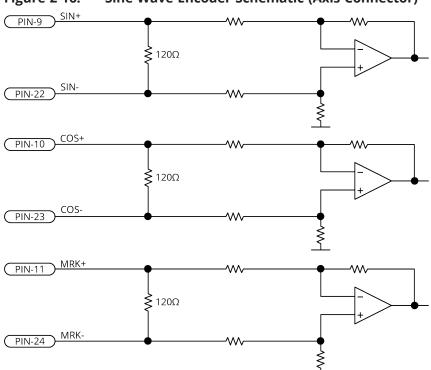
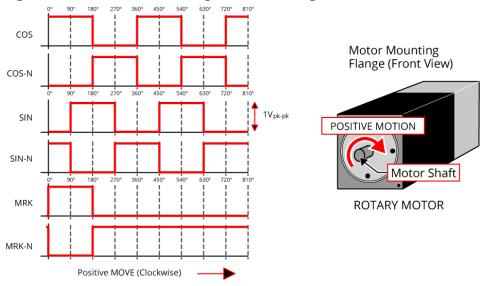
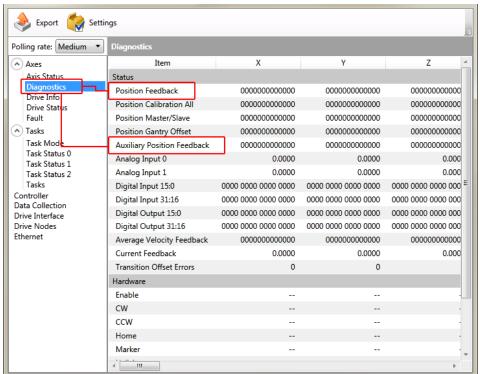



Figure 2-16: Sine Wave Encoder Schematic (Axis Connector)

2.2.7.4. Encoder Phasing

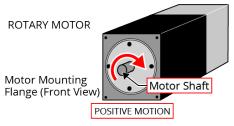
Incorrect encoder polarity will cause the system to fault when enabled or when a move command is issued. Figure 2-17 illustrates the proper encoder phasing for clockwise motor rotation (or positive forcer movement for linear motors). To verify, move the motor by hand in the CW (positive) direction while observing the position of the encoder in the diagnostics display (see Figure 2-18).


Figure 2-17: Encoder Phasing Reference Diagram (Standard)

IMPORTANT: Encoder manufacturers may refer to the encoder signals as A, B, and Z. The proper phase relationship between signals is shown in Figure 2-17.

Figure 2-18: Position Feedback in the Diagnostic Display

2.2.7.5. Stepper Motor Phasing


A stepper motor can be run with or without an encoder.

Without an Encoder: You do not need to phase the motor.

With an Encoder: Because the end of travel (EOT) limit inputs are relative to motor rotation, it is important to phase the motor.

Run a positive motion command. The motor is phased correctly if there is a positive scaling factor (determined by the ServoLoopSetup parameter) and the motor moves in a clockwise direction when you view the motor from the front mounting flange (Figure 2-19). If the motor moves in a counterclockwise direction, reverse the motor leads and re-run the command. After the motor has been phased, if you want to change the direction of positive motion, use the ReverseMotionDirection parameter.

Figure 2-19: Positive Motor Direction

For Aerotech-supplied systems, the motor and encoder are correctly configured and connection adjustments are not necessary.

2.2.8. Auxiliary Encoder Interface

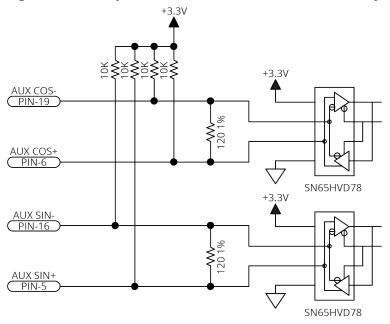
The Axis connector gives you a second encoder channel. This channel is typically used for dual loop applications.

Use the AuxiliaryFeedbackType parameter to configure the drive to accept an encoder signal type. Square Wave encoder signals: Section 2.2.8.1.

You can configure the Auxiliary Encoder interface as an output that will transmit encoder signals for external use. Use the DriveEncoderOutputConfigureInput() function to configure the Sine \pm and Cosine \pm connector pins as RS-422 outputs. You can only echo incremental square wave primary encoder inputs.

Table 2-20: Auxiliary Encoder Pins on the Axis Connector

Pin #	Description	In/Out/Bi
5	Auxiliary Sine +	Bidirectional
6	Auxiliary Cosine +	Bidirectional
18	Auxiliary Sine -	Bidirectional
19	Auxiliary Cosine -	Bidirectional


2.2.8.1. Square Wave Encoder (Auxiliary)

The drive accepts RS-422 square wave encoder signals. The drive will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

Table 2-21: Square Wave Encoder Specifications

Specification	Value	
Encoder Frequency	10 MHz maximum (25 ns minimum edge separation)	
x4 Quadrature Decoding	40 million counts/sec	

Figure 2-20: Square Wave Encoder Interface (Auxiliary)

2.3. Digital I/O Connector

This connector has two groups of four digital, optically-isolated outputs, two groups of four digital, optically-isolated inputs, and one differential high-speed user input.

Table 2-22: Digital I/O Connector Pinout

Pin #	Description	In/Out/Bi	Connector
14	Output Common for Digital Outputs 0-3	Output	
1	Opto-Isolated Digital Output 0	Output	
15	Opto-Isolated Digital Output 1	Output	
2	Opto-Isolated Digital Output 2	Output	
16	Opto-Isolated Digital Output 3	Output	
3	Output Common for Digital Outputs 4-7	Output	
17	Opto-Isolated Digital Output 4	Output	
4	Opto-Isolated Digital Output 5	Output	
18	Opto-Isolated Digital Output 6	Output	
5	Opto-Isolated Digital Output 7	Output	(A==0)
19	Input Common for Digital Inputs 0-3	Output	
6	Opto-Isolated Digital Input 0	Input	
20	Opto-Isolated Digital Input 1	Input	
7	Opto-Isolated Digital Input 2	Input	
21	Opto-Isolated Digital Input 3	Input	
8	Input Common for Digital Inputs 4-7	Output	
22	Opto-Isolated Digital Input 4	Input	
9	Opto-Isolated Digital Input 5	Input	
23	Opto-Isolated Digital Input 6	Input	
10	Opto-Isolated Digital Input 7	Input	
11	High-Speed Differential Input 8-	Input	
24	High-Speed Differential Input 8+	Input	
26	Reserved	N/A	
12	Common	Output	
13	Common	Output	
25	+5 V	Output	

Table 2-23: Digital I/O Mating Connector Ratings [-EB1]

Specification	26-Pin Solder Cup	Backshell		
Aerotech Part Number	ECK02514	ECK02517		
3M Part Number ⁽¹⁾	10126-3000PE	10326-52F0-008		
Maximum Wire Size 24 AWG (0.2 mm²) N/A				
(1) Refer to the manufacturer website for additional information.				

2.3.1. Digital Outputs

Optically-isolated solid-state relays drive the digital outputs. You can connect the digital outputs in current sourcing or current sinking mode but you must connect all four outputs in a group in the same configuration. Refer to Figure 2-22 and Figure 2-23.

The digital outputs are not designed for high-voltage isolation applications and they should only be used with ground-referenced circuits.

You must install suppression diodes on digital outputs that drive relays or other inductive devices. To see an example of a current sourcing output that has diode suppression, refer to Figure 2-22. To see an example of a current sinking output that has diode suppression, refer to Figure 2-23.

The digital outputs have overload protection. They will resume normal operation when the overload is removed.

Table 2-24: Digital Output Specifications

Digital Output Specifications	Value
Maximum Voltage	24 V (26 V Maximum)
Maximum Sink/Source Current	250 mA/output
Output Saturation Voltage	0.9 V at maximum current
Output Resistance	3.7 Ω
Rise / Fall Time	250 μs (2K pull up to 24V)
Reset State	Output Off (High Impedance State)

Table 2-25: Digital Output Pins on Digital I/O Connector

Pin #	Description	In/Out/Bi
14	Output Common for Digital Outputs 0-3	Output
1	Opto-Isolated Digital Output 0	Output
15	Opto-Isolated Digital Output 1	Output
2	Opto-Isolated Digital Output 2	Output
16	Opto-Isolated Digital Output 3	Output
3	Output Common for Digital Outputs 4-7	Output
17	Opto-Isolated Digital Output 4	Output
4	Opto-Isolated Digital Output 5	Output
18	Opto-Isolated Digital Output 6	Output
5	Opto-Isolated Digital Output 7	Output

Figure 2-21: Digital Outputs Schematic

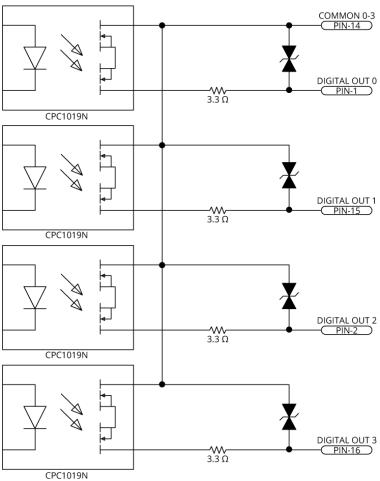
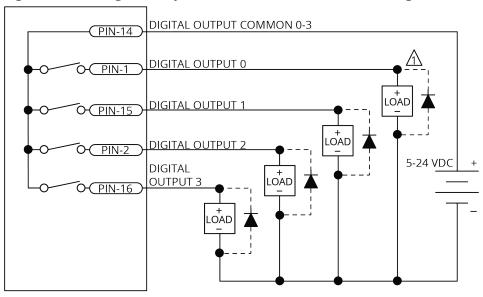
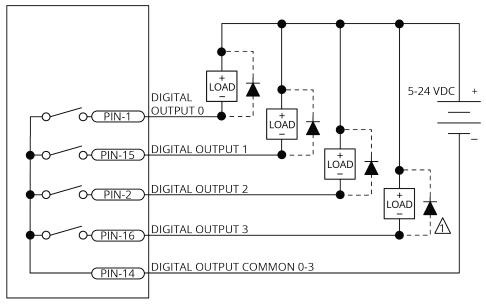




Figure 2-22: Digital Outputs Connected in Current Sourcing Mode

DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

Figure 2-23: Digital Outputs Connected in Current Sinking Mode

DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

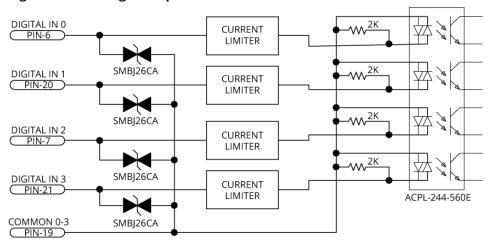
2.3.2. Digital Inputs

Input bits are arranged in groups of 4 and each group shares a common pin. This lets a group be connected to current sourcing or current sinking devices, based on the connection of the common pin in that group.

To be able to connect an input group to current sourcing devices, connect the input group's common pin to the power supply return (-). Refer to Figure 2-25.

To be able to connect an input group to current sinking devices, connect the input group's common pin to the power supply source (+). Refer to Figure 2-26.

The digital inputs are not designed for high-voltage isolation applications. They should only be used with ground-referenced circuits.


Table 2-26: Digital Input Specifications

Input Voltage	Approximate Input Current	Turn On Time	Turn Off Time
+5 V to +24 V	6 mA	10 µs	43 µs

Table 2-27: Digital Input Pins on the Digital I/O Connector

Pin #	Description	In/Out/Bi
19	Input Common for Digital Inputs 0-3	Output
6	Opto-Isolated Digital Input 0	Input
20	Opto-Isolated Digital Input 1	Input
7	Opto-Isolated Digital Input 2	Input
21	Opto-Isolated Digital Input 3	Input
8	Input Common for Digital Inputs 4-7	Output
22	Opto-Isolated Digital Input 4	Input
9	Opto-Isolated Digital Input 5	Input
23	Opto-Isolated Digital Input 6	Input
10	Opto-Isolated Digital Input 7	Input

Figure 2-24: Digital Inputs Schematic

Each group of four inputs must be connected in an all sourcing or all sinking configuration.

Figure 2-25: Digital Inputs Connected to Current Sourcing (PNP) Devices

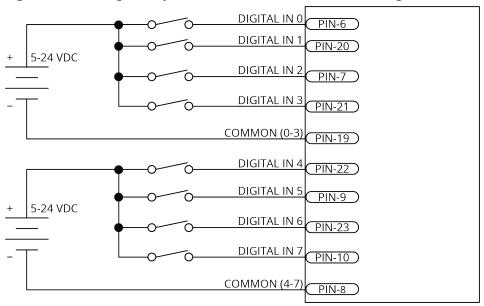
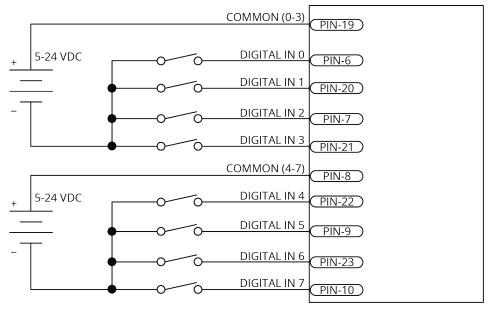
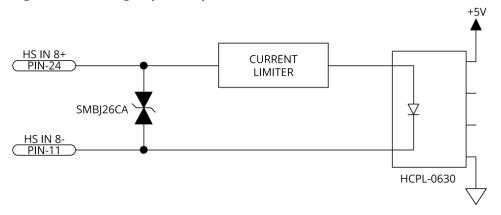



Figure 2-26: Digital Inputs Connected to Current Sinking (NPN) Devices

2.3.3. High-Speed User Input

High-speed input 8 can be used as a general purpose input or as the trigger signal for high speed data collection. Refer to the DriveDataCaptureConfigureTrigger() function topic in the Help file for more information.


Table 2-28: High-Speed Input Specifications

Specification	Value	
Input Voltage	5V - 24 V input voltages	
Input Current	10 mA	
Input Device	HCPL-0630	
Delay	50 nsec	

Table 2-29: High-Speed Input Pins on the Digital I/O Connector

Pin #	Description	In/Out/Bi
11	High-Speed Differential Input 8-	Input
24	High-Speed Differential Input 8+	Input

Figure 2-27: High-Speed Input

2.4. Analog I/O and Laser Interface Connector

This connector has four analog inputs, two analog outputs, one PSO output, and one PSO external sync input.

Table 2-30: Analog I/O and Laser Interface Connector Pinout

Pin #	Description	In/Out/Bi	Connector
4	+5 Volt (500 mA max)	Output	
11	PSO Output (TTL)	Output	
1	Common	Output	
12	Reserved	N/A	
2	Common	Output	
13	Reserved	N/A	
3	Common	Output	
14	PSO External Sync	Input	₽ ■
15	Analog Output 0	Output	
5	Analog Common	Output	
16	Analog Output 1	Output	
6	Analog Common	Output	
7	Analog Input 0+ (Differential)	Input	
17	Analog Input 0- (Differential)	Input	
8	Analog Input 1+ (Differential)	Input	
18	Analog Input 1- (Differential)	Input	
9	Analog Input 2+ (Differential)	Input	
19	Analog Input 2- (Differential)	Input	
10	Analog Input 3+ (Differential)	Input	
20	Analog Input 3- (Differential)	Input	

Table 2-31: Laser Interface Mating Connector Ratings

Tuble 2 5 1. Luser interruce matring connector ratings			
Specification	20-Pin Solder Cup	Backshell	
Aerotech Part Number	ECK02515	ECK02518	
3M Part Number ⁽¹⁾	10120-3000PE	10320-52F0-008	
Maximum Wire Size 24 AWG (0.2 mm²) N/A			
(1) Refer to the manufacturer website for additional information.			

2.4.1. Position Synchronized Output (PSO) Interface

This output signal is a 5V TTL signal which is used to drive an opto coupler or general purpose TTL input. This signal is active high and is driven to 5V when a PSO fire event occurs.

You can use the external PSO synchronization functions to synchronize waveform generation with an external synchronization signal. When you activate this feature, the PSO Waveform module will not generate the configured waveform when an output event is received until the rising edge of the synchronization signal occurs.

Table 2-32: PSO Specifications

Specification	Value
Output	5 V, 50 mA (max)
Maximum PSO Output (Fire) Frequency	12.5 MHz
Output Latency	Enc
[Fire event to output change]	5 ns

Table 2-33: PSO External Sync Specifications

Specification	Value
Voltage	3.3 VDC
Frequency	25 MHz Maximum
On Time	20 ns Minimum

Table 2-34: PSO Output Pins on the Analog I/O and Laser Interface Connector

Pin #	Description	In/Out/Bi
11	PSO Output (TTL)	Output
1	Common	Output
14	PSO External Sync	Input

Figure 2-28: PSO TTL Outputs Schematic

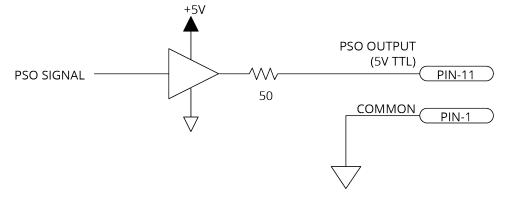
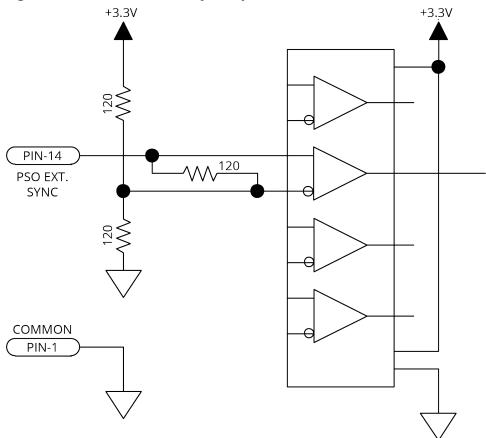
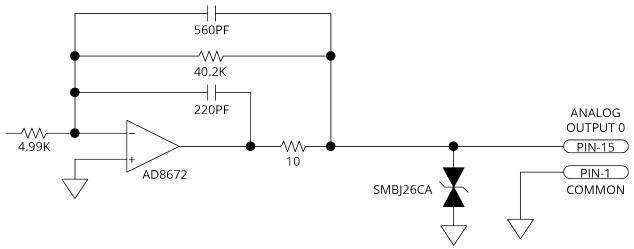



Figure 2-29: PSO External Sync Input Schematic

2.4.2. Analog Outputs

The analog outputs can be set from within a program or they can be configured to echo the state of select servo loop nodes.

The analog outputs are set to zero when you power on the system or reset the drive.


Table 2-35: Analog Output Specifications

Specification	Value
Output Voltage	-10 V to +10 V
Output Current	5 mA
Resolution (bits)	16 bits

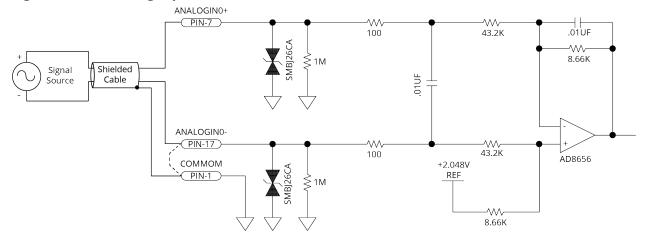
Table 2-36: Analog Output Pins on the Analog I/O and Laser Interface Connector

Pin #	Description	In/Out/Bi
15	Analog Output 0	Output
5	Analog Common	Output
16	Analog Output 1	Output
6	Analog Common	Output

Figure 2-30: Analog Outputs Schematic

2.4.3. Analog Inputs (Differential)

To interface to a single-ended, non-differential voltage source, connect the signal common of the source to the negative input and connect the analog source signal to the positive input. A floating signal source must be referenced to the analog common. Refer to Figure 2-31.


Table 2-37: Analog Input Specifications

Specification	Value	
(Al+) - (Al-)	+10 V to -10 V ⁽¹⁾	
Resolution (bits)	16 bits	
Input Impedance	1 ΜΩ	
1. Signals outside of this range may damage the input		

Table 2-38: Analog Input Pins on the Analog I/O and Laser Interface Connector

Pin #	Description	In/Out/Bi
6	Analog Common	Output
7	Analog Input 0+ (Differential)	Input
17	Analog Input 0- (Differential)	Input
8	Analog Input 1+ (Differential)	Input
18	Analog Input 1- (Differential)	Input
9	Analog Input 2+ (Differential)	Input
19	Analog Input 2- (Differential)	Input
10	Analog Input 3+ (Differential)	Input
20	Analog Input 3- (Differential)	Input

Figure 2-31: Analog Inputs Schematic

2.4.4. Sync Port

The Sync port is a bi-directional high speed proprietary interface that lets you transmit encoder signals between drives. This is typically used for multi-axis PSO applications where one or two drives send their encoder signals to a main drive that has the PSO logic and PSO output signal. The controller contains two Sync ports, labeled A and B.

To avoid signal contention, all Sync ports default to the input state during reset and immediately after power is applied to the drive.

Table 2-39: Sync-Related Functions

Function	Description
DriveEncoderOutputConfigureDivider(),	
DriveEncoderOutputConfigureInput(),	Configure each Sync port as an input or an
DriveEncoderOutputOn(),	output
DriveEncoderOutputOff()	
PsoDistanceConfigureInputs()	Let the PSO to track the SYNC A or SYNC B port.
PsoWindowConfigureInput()	Let the F30 to track the 31NC A of 31NC B port.

The Sync port uses low-voltage differential signaling (LVDS) and standard USB 3.0 type A (cross over) cables.

Table 2-40: Sync Port Cables

Part Number	Desciption
CBL-SYNC-3	Length 3 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-5	Length 5 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-7	Length 7 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-10	Length 10 dm; Connectors: USB Type A to USB Type A

2.5. HyperWire Interface

The HyperWire bus is the high-speed communications connection from the controller. It operates at 2 gigabits per second. The controller sends all command and configuration information through the HyperWire bus.

HyperWire cables can be safely connected to or disconnected from a HyperWire port while the PC and/or drive is powered on. However, any changes to the HyperWire network topology will disrupt communication and you must reset the controller to re-establish communication.

WARNING: Do not connect or disconnect HyperWire cables while you are loading firmware or damage to the drives may occur.

Table 2-41: HyperWire Card Part Number

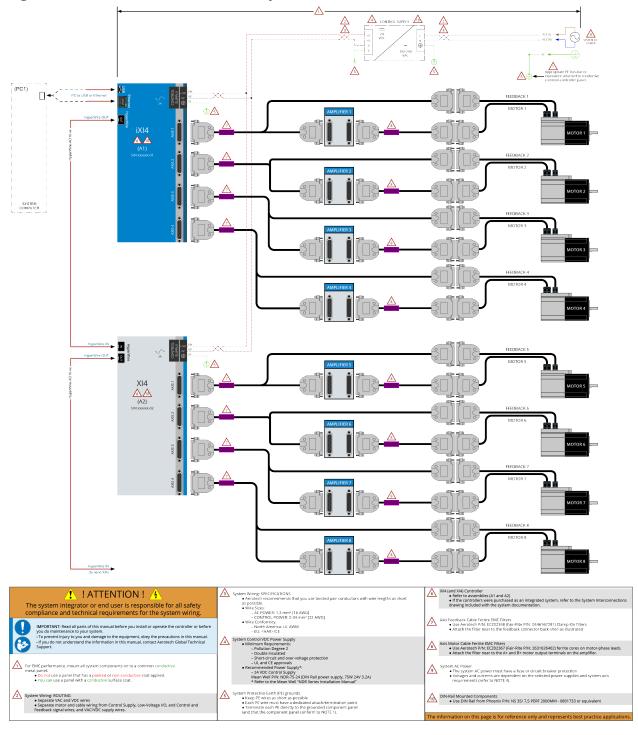
Part Number	Description
HYPERWIRE-PCIE	HyperWire adapter, PCle x4 interface

Table 2-42: HyperWire Cable Part Numbers

Part Number	Description
HYPERWIRE-AO10-5	HyperWire cable, active optical, 0.5 m
HYPERWIRE-AO10-10	HyperWire cable, active optical, 1.0 m
HYPERWIRE-AO10-30	HyperWire cable, active optical, 3.0 m
HYPERWIRE-AO10-50	HyperWire cable, active optical, 5.0 m
HYPERWIRE-AO10-200	HyperWire cable, active optical, 20.0 m

2.6. Industrial Ethernet (iXI4 Only)

The controller is equipped with 100BASE-TX Industrial Ethernet ports.



IMPORTANT: Industrial Ethernet is only available on the iXI4.

- For the location of the ports, refer to Figure 1-1.
- For cable part numbers, refer to Table 3-1.
- For more information, refer to the Help system.

2.7. System Interconnection

Figure 2-32: Drive-Based Controller System Interconnection (Best Practice)

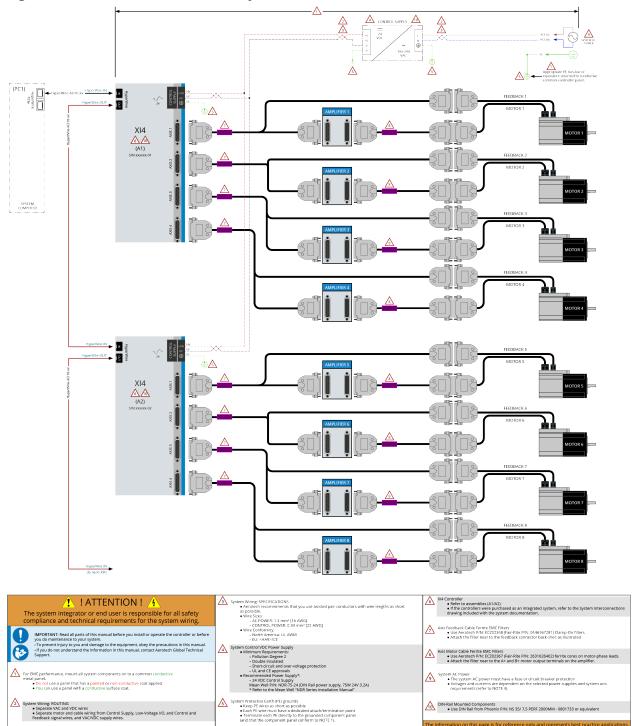


Figure 2-33: PC-Based Controller System Interconnection (Best Practice)

2.8. PC Configuration and Operation Information

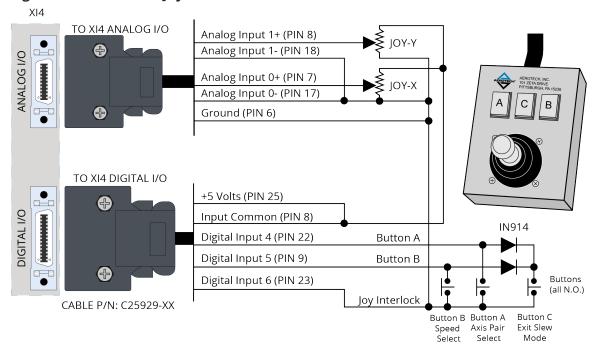
For more information about hardware requirements, PC configuration, programming, system operation, and utilities, refer to the Help file.

This page intentionally left blank.

Chapter 3: Cables and Accessories

IMPORTANT: Find Aerotech cable drawings on the website at http://www.aerotechmotioncontrol.com/manuals/index.aspx.

Table 3-1: Standard Interconnection Cables


Cable Part #	Description	
Joystick	Refer to Section 3.1. Joystick Interface	
Handwheel	Refer to Section 3.2. Handwheel Interface	
ENET-CAT5e-xx ^(1, 2)	Ethernet CAT5e Cable	
USB-AMCM-xx ^(1, 2)	USB Cable A-Male to C-Male	
(1) The "-xx" indicates length in decimeters.		
(2) iXI4 Only.		

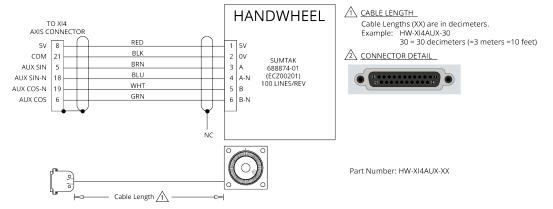
3.1. Joystick Interface

Aerotech Multi-Axis Joystick (NEMA12 (IP54) rated) is powered from 5 V and has a nominal 2.5 V output in the center detent position. Three buttons are used to select axis pairs and speed ranges. An optional interlock signal is used to indicate to the controller that the joystick is present. Joystick control will not activate unless the joystick is in the center location. Third party devices can be used provided they produce a symmetric output voltage within the range of -10 V to +10 V.

Connecting joystick with an Aerotech cable, all Aerotech cables are labeled to identify the connector and connections. The joystick parameters must be set to match the analog and digital I/O connections. Refer to the Help file for programming information about how to change joystick parameters.

Figure 3-1: Two Axis Joystick Interface

3.2. Handwheel Interface


A handwheel can be used to manually control axis position. The handwheel must provide 5V differential quadrature signals to the drive.

IMPORTANT: You can find instructions on how to enable the handwheel in the online Help file.

Connect a handwheel to the Axis Connector as shown in Figure 3-2.

Figure 3-2: Handwheel Interconnection to Axis Connector

Chapter 4: Maintenance

IMPORTANT: For your own safety and for the safety of the equipment:

- Do not remove the cover of the iXI4/XI4
- Do not attempt to access the internal components.

A fuse that needs to be replaced indicates that there is a more serious problem with the system or setup. Contact Global Technical Support for assistance.

Table 4-1: LED Description

LED	Color	Description	
PWR	GREEN	The light will illuminate and remain illuminated while power is applied.	
	GREEN	Any of the axes are Enabled.	
	RED	Any of the axes are in a Fault Condition.	
ENB/FLT	GREEN/RED (alternates)	Any of the axes are Enabled in a Fault Condition. or	
		The light is configured to blink for setup.	

Table 4-2: Troubleshooting

Symptom	Possible Cause and Solution
No Communication	Make sure the power LED is illuminated (this indicates that power is present).
No Communication	Make sure that all communication cables (HyperWire, for example) are fully inserted in their ports.

4.1. Preventative Maintenance

Do an inspection of the iXI4/XI4 and the external wiring one time each month. It might be necessary to do more frequent inspections based on:

- The operating conditions of the system.
- How you use the system.

Table 4-3: Preventative Maintenance

Check	Action to be Taken
Examine the chassis for hardware and parts that are damaged or loose. It is not necessary to do an internal inspection unless you think internal damage occurred.	Repair all damaged parts.
Do an inspection of the cooling vents.	Remove all material that collected in the vents.
Examine the work area to make sure there are no fluids and no electrically conductive materials.	Do not let fluids and electrically conductive material go into the chassis.
Examine all cables and connections to make sure they are correct.	Make sure that all connections are correctly attached and not loose. Replace cables that are worn. Replace all broken connectors.

Cleaning

DANGER: Before you clean the iXI4/XI4, disconnect the electrical power from the drive.

Use a clean, dry, soft cloth to clean the iXI4/XI4. If necessary, use a cloth that is moist with water or isopropyl alcohol. If you use a moist cloth, make sure that moisture does not go into the controller. Also make sure that it does not go onto the outer connectors and components. Internal contamination from the cleaning solution can cause corrosion and electrical short circuits.

Do not clean the labels with a cleaning solution because it might remove the label information.

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's products are specifically designed and/or manufactured for buyer's use or purpose. Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit Global Technical Support Portal for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

http://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA,	CANADA,	MEXICO
------	---------	---------------

Aerotech, Inc. Global Headquarters

TAIWAN

Aerotech Taiwan Full-Service Subsidiary

CHINA

Aerotech China Full-Service Subsidiary

UNITED KINGDOM

Aerotech United Kingdom Full-Service Subsidiary

GERMANY

Aerotech Germany Full-Service Subsidiary

Appendix B: Revision History

Revision	Description
1.04	Updates include:Section 2.1.1.Section 2.2.6.
	 Section 2.2.6. MX1 Interpolation Factor changed from 16,384 to 4,096 EU Declaration of Conformity
1.03	Added support for Industrial Ethernet
1.02	Added support for iXI4
1.01	Added Chapter 3: Cables and Accessories
1.00	New manual

This page intentionally left blank.

Index

		Cables	
2		HyperWire	62
		Sync Port	61
2011/65/EU	8	Cables and Accessories	67
2014/30/EU	8	cables, examining	70
Α		Check for fluids or electrically conductive material exposure	70
Absolute Encoder (Feedback Connector)	43	Cleaning	70
Absolute Encoder Schematic (Axis Connector)	43	Clock and Direction Output Schematic	34
Altitude	27	Clock and Direction Timing	33
Ambient Temperature	27	Clock Output Signals	33
Amplifier Enable Connector Pin on the Axis Connector	40	Commands	
Amplifier Enable Output	40	Sync	61
Amplifier Enable Output Schematic	40	Conducted and Radiated Emissions	8
Amplifier Enable Output Specifications	40	connections, examining	70
Amplifier Fault Input Specifications	39	Control Supply Connections	29
Analog Encoder Schematic (Axis Connector)	45	Control Supply Connector	29
Analog Encoder Specifications (Feedback Connector)	44	Mating Connector Part Numbers	29
Analog I/O and Laser Interface Connector Pinout	56	Wiring Specifications	29
Analog Input Pins on the Analog I/O and Laser Interface		Control Supply specifications	19
Connector Pinout	60	cooling vents, inspecting	70
Analog Input Specifications (Digital / Analog I/O B		Current Command Output Schematic	32
Connector)	60	Current Command Output Signals	32
Analog Inputs (Digital / Analog I/O B Connector)	60	Current Command Pins on the Axis Connector	32
Analog Inputs Schematic	60	Current Command Signal Output Specifications	32
Analog Output Pins on the Analog I/O and Laser Interfac Connector Pinout	e 59	Customer order number	10
Analog Output Specifications (Digital and Analog I/O Connector)	59	D	
Analog Outputs (Digital and Analog I/O Connector)	59	Declaration of Conformity	8
Analog Outputs Schematic	59	Digital / Analog I/O Connectors	
Auxiliary Encoder Pins on the Axis Connector	48	Analog Inputs (Differential)	60
Axis Connector		Digital and Analog I/O Connector	
Encoder Inputs	41	Analog Outputs	59
End of Travel Limit Input	37	Digital I/O Connector	
Mating Connector Part Numbers	31	Mating Connector Part Numbers	49,56
Pinout	31	Digital I/O Connector Pinout	49
Primary Encoder	41	Digital Input Pins on the Digital I/O Connector	53
Travel Limit Input	37	Digital Input Specifications	53
Axis Enable Output		Digital Inputs	53
		Digital Inputs Connected to a Current Sinking Device	54
В		Digital Inputs Connected to a Current Sourcing Device	54
BiSS absolute encoder	43	Digital Inputs Schematic	53
Brushless Motor Powered Motor Phasing			

Digital Output Connector Pinout	50	Environmental Specifications	27
Digital Output Specifications	50	EU 2015/863	
Digital Outputs	50	examining parts	
Digital Outputs Connected in Current Sinking Mode	52	cables	70
Digital Outputs Connected in Current Sourcing Mode	52	connections	70
Digital Outputs Schematic	51	examining, dangerous fluids	70
Dimensions	21	examining, dangerous material	70
Dimensions (2-Axis)	21,23		
Dimensions (4-Axis)	22,24	F	
DIN Rail		Feature Summary	17
Mounting Procedure	25	Feedback Connector	.,
P/N		Absolute Encoder	43
EAM00914	25	Hall-Effect Inputs	35
DIN Rail Clip Kit		RS-422 Line Driver Encoder	42
P/N		Square Wave Encoder	42
HyperWire-DIN	25	Feedback Monitoring	36
Direction Output Signals	33	Figure	50
Direction Signal Output Polarity	33	Absolute Encoder Schematic (Axis Connector)	43
Drawing number	10	Analog Encoder Schematic (Axis Connector)	45
Drive and Software Compatibility	27	Analog Inputs Schematic	60
Drive IP Rating		Analog Outputs Schematic	59
IP20	20	Control Supply Connections	29
		Digital Inputs Connected to a Current Sinking Device	
E		Digital Inputs Connected to a Current Sourcing Devi	
EAM00914 (DIN Rail Part Number)	25	Digital Inputs Schematic	53
Electrical Specifications	19	Digital Outputs Schematic	51
Electromagnetic Compatibility (EMC)	8	Dimensions (2-Axis)	21,23
EMC/CE Compliance	30	Dimensions (4-Axis)	22,24
Enclosure		End of Travel Limit Input Connections	37
IP54 Compliant	20	End of Travel Limit Input Diagnostic Display	38
encoder		End of Travel Limit Input Schematic	37
absolute	43	Hall-Effect Inputs Schematic	35
Encoder and Hall Signal Diagnostics	36	High-Speed Input	55
Encoder Input Pins on the Axis Connector	41	Outputs Connected in Current Sinking Mode	52
Encoder Inputs (Axis Connector)	41	Outputs Connected in Current Sourcing Mode	52
Encoder Phasing	46	Positive Motor Direction	36
Encoder Phasing Reference Diagram	46	PSO External Sync Input Schematic	58
End of Travel Limit Input (Axis Connector)	37	PSO TTL Outputs Schematic	57
End of Travel Limit Input Connections	37	Sine Wave Encoder Schematic (Axis Connector)	45
End of Travel Limit Input Diagnostic Display	38	Square Wave Encoder Inputs Schematic (Axis	
End of Travel Limit Input Pins on the Axis Connector	37	Connector)	48
End of Travel Limit Input Schematic	37	Square Wave Encoder Schematic (Axis Connector)	42
End of Travel Limit Phasing	38	TTL Outputs Schematic (PSO)	57
EnDat absolute encoder	43	fluids, dangerous	70

Functional Diagram		Mounting and Cooling	20
		Mounting Hardware	20
н		Mounting Orientation	20
Hall-Effect Feedback Pins on the Axis Connector	35		
Hall-Effect Inputs (Feedback Connector)		0	
Hall-Effect Inputs Schematic	35	OEM Mounting Procedure	26
Handling	10	Operation	27
Handwheel Interconnection to the Aux I/O Connector	68	Overview	13
Handwheel Interface	68		
High-Speed Input	55	P	
High-Speed Input Pins on the Digital I/O Connector	55	packing list	10
High-Speed Input Specifications	55	PC Configuration and Operation Information	65
High-Speed User Input	55	Phasing	38
Humidity	27	Powered Brushless Motor	36
HyperWire	62	Stepper Motor	47
Cable Part Numbers	62	Pinout	47
Card Part Number	62	Amplifier Enable Connector (Axis Connector)	40
HyperWire-DIN (DIN Rail Clip Kit Part Number)	25	Analog I/O and Laser Interface Connector	56
ľ		Analog Input Pins (Analog I/O and Laser Interface Connector)	60
Input Power Connections	29	Analog Output Pins (Analog I/O and Laser Interface Connector)	59
inspecting cooling vents	70	Auxiliary Encoder (Axis Connector)	48
Inspection	70	Auxiliary Encoder Pins (Axis Connector)	48
Installation and Configuration	29	Axis Connector	31
Installation Overview	11	Current Command Pins (Axis Connector)	32
Introduction	13	Digital I/O Connector	49
IP20 Drive IP Rating	20	Digital I/O Connector)	53
IP54 Compliant Enclosure	20	Digital Dutput Connector	50
		Encoder Input (Axis Connector)	41
J		End of Travel Limit Input Pins (Axis Connector)	37
Joystick Interface		Hall-Effect Feedback Pins (Axis Connector)	35
		High-Speed Input Pins (Digital I/O Connector)	55
		Primary Encoder Inputs (Axis Connector)	41
	69	PSO Output Pins (Aux I/O Connector)	57
Maintenance		•	33
material, electrically conductive		Stepper Clock Pin (Axis Connector)	
Mating Connector P/N	31	Stepper Direction Pin (Axis Connector)	33
Axis Connector		Polarity of the Direction Signal Output	33
Control Supply Connector		Pollution	27
Digital I/O Connector		Position Feedback in the Diagnostic Display	46
Mechanical Specifications	20	Positive Motor Direction	36
Minimizing Conducted, Radiated, and System Noise for	or 30	Preventative Maintenance	70
EMC/CE Compliance		Primary Encoder (Axis Connector)	41
Modes of Operation		Primary Encoder Input Pins on the Axis Connector	41

Protective Features		Stepper Clock and Stepper Direction Timing	33
PSO		Stepper Clock Output Signals	33
TTL Outputs Schematic		Stepper Clock Pin on the Axis Connector	33
PSO External Sync Input Schematic	58	Stepper Clock Signal Output Specifications	33
PSO External Sync Specifications	57	Stepper Direction Output Signals	33
PSO Output Pins on the Digital I/O Connector	57	Stepper Direction Pin on the Axis Connector	33
PSO Specifications	57	Stepper Direction Signal Output Specifications	33
		Stepper Motor Phasing	47
R		Storage	10
Resolute absolute encoder	43	Sync-Related Commands	61
Revision History	73	Sync Port Cables	61
RS-422 Encoder Specifications (Feedback Connector)	42,48	Sync Ports	61
RS-422 Line Driver Encoder	42	System part number	10
S		Т	
Safety Procedures and Warnings	9	Table of Contents	3
serial data stream	43	Travel Limit Input (Axis Connector)	37
serial number	10	TTL Outputs Schematic (PSO)	57
Sine Wave Encoder Schematic (Axis Connector)	45	Two Axis Joystick Interface	67
Sine Wave Encoder Specifications (Feedback Connector)			
Specifications	31) 11	U	
Amplifier Enable Output	40	Unit Weight	20
Amplifier Fault Input	39	Use	27
Analog Encoder (Feedback Connector)		User Power Supply specifications	19
Analog Input (Digital / Analog I/O B Connector)	44 60	оза. тома. зарру врешнами.	
Analog Output (Digital and Analog I/O Connector)	59	W	
Control Supply Connector Wiring	29		
Current Command Signal Output	32	Warranty and Field Service	71
Digital Inputs	53		
Digital Outputs	50		
High-Speed Input	55		
PSO	57		
RS-422 Encoder (Feedback Connector)	42,48		
Sine Wave Encoder (Feedback Connector)	44		
Square Wave Encoder (Feedback Connector)	42,48		
Stepper Clock Signal Output	33		
Stepper Direction Signal Output	33		
Unit Weight	20		
Square Wave Encoder	42		
Square Wave Encoder Inputs Schematic (Axis Connect	tor) 48		
Square Wave Encoder Schematic (Axis Connector)	42		
Square Wave Encoder Specifications (Feedback Connector)	42,48		
Stepper Clock and Stepper Direction Output Schemati	ic 3/1		